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Abstract—A 67-GHz 1/4 static frequency divider using 0.2- m
self-aligned selective-epitaxial-growth SiGe heterojunction bipolar
transistors, with a 122-GHz cutoff frequency, a 163-GHz maximum
oscillation frequency, and an average emitter coupled logic gate
delay time of 5.65 ps, was developed. The pretracking master–slave
toggle flip-flop (MS–TFF) of the divider increases the maximum
operating frequency to about 15% higher than that of a conven-
tional MS–TFF, yet the power consumption of the divider is 175
mW, which is 1/5 that of comparable dividers, at a supply voltage
of 5.2 V.

Index Terms—Bipolar transistors, emitter coupled logic,
epitaxial growth, frequency conversion, heterojunctions, mil-
limeter-wave bipolar integrated circuits, MIMICs, optical
communication.

I. INTRODUCTION

FUTURE optical communication systems operating at
over 10 Gb/s and microwave/millimeter-wave systems for

mobile and wireless communication will require high-speed
transistor technology. In particular, to meet explosively
growing demands for wide-bandwidth radio communications
systems, there have been rapid advances in development of
monolithic millimeter-wave integrated circuits (MMWICs).
The high-speed frequency divider (FD) is a key circuit for
applications that require frequency division. Accordingly,
given the demand for high-speed, static, and/or quasi-static FD
integrated circuits (ICs) operating at frequencies of over 60
GHz, up to 66 GHz with InAlAs/InGaAs heterojunction bipolar
transistors (HBTs) [1] and 20–72 GHz with InP/InGaAs HBTs
[2] have been developed. However, over the last decade, FD
ICs have been mainly based on III–V compound semiconductor
devices. To penetrate millimeter-wave systems into the field of
consumer electronics, low-cost monolithic ICs are essential for
their availability and ease of use.

A SiGe-base HBT with a below-10-ps emitter coupled logic
(ECL) gate delay [3], [4] and a cutoff frequency of over 100
GHz [5] is one of the most promising candidates to meet this
requirement. We have, therefore, developed a 1/4 static FD fab-
ricated by using 0.2-m self-aligned selective-epitaxial-growth
(SEG) SiGe HBTs with shallow-trench and dual-deep-trench
isolations and Ti–salicide electrodes [6], [7]. This HBT was fab-
ricated on a 200-mm wafer line, and the fabrication process is al-
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Fig. 1. Schematic cross section of a 0.2-�m SiGe HBT with shallow-trench
(STI) and dual-deep-trench (DTI) isolations and Ti–salicide electrodes.

most completely compatible with 0.2-m bipolar-CMOS tech-
nology [8]. The SiGe HBT exhibited a peak cutoff frequency
of 122 GHz, a peak maximum oscillation frequency of 163
GHz, and an average ECL gate delay time of 5.65 ps. The static
FD applying the circuit of a pretracking master–slave toggle
flip-flop (PT MS-TFF) operated at up to 67 GHz. This toggle
flip-flop (TFF) increases the maximum operating frequency to
about 15% higher than that of a conventional MS-TFF.

II. DEVICE STRUCTURE ANDTRANSISTORCHARACTERISTICS

A schematic cross section of the self-aligned SEG SiGe HBT
is shown in Fig. 1. An Si-cap/SiGe-base multilayer self-aligned
to the emitter was selectively grown. To provide a good link
between the intrinsic and extrinsic bases, a poly-Si-assisted
self-aligned SEG (PASS) structure was applied [3], [9]. This
self-aligned active-region structure provides both low collector
capacitance and low base resistance. Furthermore, to reduce
the parasitic capacitances of the collector and substrate, respec-
tively, shallow-trench (STI) and dual 0.6-m-wide deep-trench
(DTI) isolations were used. To reduce the parasitic resistance
of all electrodes, Ti-salicide layers with a sheet resistance of
3 were formed. A double selective phosphorus-implanted
collector (SIC) in the 0.3-m-thick Si epitaxial layer and in the
undoped SiGe increased the collector–doping level to about
7 10 cm .

The 0.6- m-wide Si-cap/SiGe–base multilayer self-aligned
to the 0.2- m-wide emitter was selectively grown by ultrahigh
vacuum/chemical vapor deposition (UHV/CVD) using SiH ,
GeH , and B H source gases at 550C for the SiGe layer and
Si H at 580 C for the Si layer. The SEG layer consisted of a
20-nm-thick Si cap, 15-nm-thick dual-graded Ge-profile (graded
from 0% to 10% and from 10% to 15%) Si Ge , 40-nm-thick
Si Ge , and 10-nm-thick Ge-retrograded Si Ge . A
15-nm-thick 2 10 -cm boron-doped Si Ge layer was
formed as the intrinsic base in the SEG layer.
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Fig. 2. Schematic cross section of a four-level metal layer structure with an
MIM capacitor and a poly-Si resistor.

Fig. 3. Gummel plot and current gainh dependence on collector current
I of an SiGe HBT with an emitter area of 0.2� 1 �m .

A schematic cross section of a four-level metal layer structure
with a metal–insulator–metal (MIM) capacitor and a poly-Si re-
sistor is shown in Fig. 2. Chemical mechanical polishing was
used to planarize the W of the 0.5-m-wide contact plugs and
0.6 0.6- m via holes and the plasma SiOinterlayer insu-
lator. A resistor with a sheet resistance of 220 was formed
by using 200-nm-thick poly-Si. An MIM capacitor with a capac-
itance of 0.7 fF/m was formed between the first- and second-
level metals by using 50-nm-thick plasma SiOas an insulator.
The fourth-level (1.35-m-thick Al) metal provides a high-
inductor. The process (except the SEG) to fabricate the SiGe
HBTs is almost the same as the 0.2-m bipolar-CMOS process.

SiGe HBTs with an emitter area of 0.2 1 m exhibited
good – performance with a high peak current gain of
2100, as shown in the Gummel plot, and by the dependence
on collector current in Fig. 3. The base–recombination cur-
rent was below 10 pA, and the current gain was higher than 1000
in the low collector–current region up to 3 nA.

The dependences of cutoff frequency () and maximum os-
cillation frequency ( ) of the transistors on collector current,
whose emitter area was 0.22 m , at a collector-to-emitter
bias voltage of 2 V are shown in Fig. 4. The peak cutoff fre-
quency is 122 GHz and the maximum oscillation frequency

is 163 GHz. The frequency dependence of the magnitude
of , maximum stable gain (MSG)/maximum available gain
(MAG), and unilateral gain at of 3 mA is shown in Fig. 5.
We attribute this high to the high arising from the
shallow SiGe base, low base resistance, and low collector ca-
pacitance.

Fig. 4. Cutoff frequency (f ) and maximum oscillation frequency (f ) of
an SiGe HBT with an emitter area of 0.2� 2 �m .

Fig. 5. Frequency dependence of the magnitude ofh , maximum stable gain
(MSG)/maximum available gain (MAG), and unilateral gainU for an SiGe HBT
with an emitter area of 0.2� 2 �m at a collector current of 3 mA.

Fig. 6. Map of gate delay time measured by using 53-stage differential ECL
ring oscillators at a switching current of about 1.85 mA and a single-ended
voltage swing of 250 mV on 200-mm wafer image. An ECL gate delay time is
shown in picoseconds. Some positions (blank spaces) were not probed because
the probing station could only probe a wafer of less than 150-mm diameter.

The map of gate delay time, measured by using 53-stage dif-
ferential ECL ring oscillators at a switching current of about
1.85 mA and a single-ended voltage swing of 250 mV, is shown
on the 200-mm wafer image in Fig. 6. The average ECL gate
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Fig. 7. Block diagram of 1/4 SFD, PT MS-TFF circuit, and operating waveform. B and C in bracket denotes a terminal of base and collector of each transistor.

delay time is 5.65 ps and its standard deviation is 0.96 ps. This
ultrahigh-speed operation also indicates the suitability of this
SiGe HBT to MMWICs.

III. STATIC-FREQUENCY-DIVIDER CIRCUIT

A block diagram of a 1/4 static frequency divider (SFD) and
the circuit of a PT MS–TFF are shown in Fig. 7. The divider
consists of a 50--terminated three-emitter-follower input
buffer, a PT MS-TFF based on a fast comparator technique [10]
as the first divide-by-two stage, a conventional master–slave
toggle flip-flop (MS-TFF) as the second divide-by-two stage,
internal buffers to reform the output signal of each MS-TFF,
and an output buffer driving 50- lines. In the PT MS-TFF,
to extend the operating frequency, a load resistor was sepa-
rated into two resistors and , and collector nodes of
latching pair transistors were connected at the node between
the two resistors. Therefore, the low level of output of the
tracking pair rises to a level equal to the product of the PT ratio

and the total logic swing voltage
during the latching phase. Also, the logic swing voltage of
the latching pair is reduced to the same level. As a result, the

response of the collector and base nodes of the upper quadrant
multiplier becomes faster and, hence, the latch-to-track tran-
sition time reduces. We optimized the internal single-ended
voltage swing for the MS-TFF to 250 mV by calculating the
gate delay time of a single flip-flop biased to operate as an
inverter, and typical of the PT MS-TFF was also set
as the same value. To obtain higher operating speed, two
emitter followers were used in each stage after the flip-flops.
The emitter lengths of each emitter follower transistor were
optimized to 1.5 and 3m in the master stage and 1.5 and 4m
in the slave stage to reduce the loading of the flip-flops.

IV. EXPERIMENTAL RESULTS

The input sensitivities of 1/4 pretracking static frequency di-
viders (PT-SFDs) with different pretracking (PT) ratios com-
pared to those of conventional SFDs at switching currents ()
of 1.02 and 1.28 mA are shown, respectively, in Fig. 8(a) and
(b). The SFDs were measured on-wafer by using 67-GHz mi-
crocoaxial probes. The sinusoidal clock input was single-ended
driven and the second differential input was terminated at 50

. The dependence of maximum operating frequency
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Fig. 8. Input sensitivities of the PT-SFDs with different PT ratios at switching
currents (I ) of: (a) 1.02 and (b) 1.28 mA.

Fig. 9. Dependence of maximum operating frequencyf on PT ratio at
switching currents (I ) of 1.02 and 1.28 mA.

on the PT ratio is shown in Fig. 9. The PT-SFD with a PT
ratio of about 0.6 operates about 10% faster than the conven-
tional SFD (PT ratio is equal to one), and that with a PT ratio of
about 0.4 operates about 17% and 14% faster atof 1.02 and
1.28 mA, respectively. This result indicates that the PT MS-TFF
is more effective at the low-power operation because time con-
stants of the collector and base nodes of the upper quadrant mul-
tiplier has a strong influence on at low switching current.
The 16.75-GHz divided-by-four output waveform for a 67-GHz
input in the PT-SFD at a PT ratio of 0.41 and the switching cur-
rent of 1.28 mA is shown in Fig. 10.

The dependence of the maximum operating frequency
on at the switching current of 1.28 mA is shown
in Fig. 11. In the conventional SFD, monotonically in-

Fig. 10. 16.75-GHz divided-by-four output waveform of the PT-SFD for a
67-GHz clock input. PT ratio is 0.41, the switching current is 1.28 mA, and the
total logic swing voltage is 250 mV.

Fig. 11. Dependence of maximum operating frequenciesf on the total
logic swing voltageV for the switching currentI of 1.28 mA.

creases as reduces. On the contrary, in the PT-SFD, there
was the optimum , which produces the highest , de-
pending on the PT ratio. The optimum values at PT ratios of 0.59
and 0.41 are approximately 225 and 325 mV, respectively. Thus,
the latching voltage is about 130 mV.

The power consumption of the PT MS-TFF is 175 mW
at a supply voltage of 5.2 V. This is about 1/5 that of a
66-GHz SFD with transferred-substrate InAlAs/InGaAs HBTs
[1]. The high-speed low-power SFD operation demonstrates
that this SiGe HBT technology (like high-reliability and
cost-effectiveness Si technology) will play an important role in
future millimeter-wave systems. A chip micrograph of the 1/4
PT-SFD, including an enlarged image of the PT MS-TFF region
(taken after the first-metal formation) is shown in Fig. 12. The
PT-SFD occupies a 0.97 1.1 mm area and the main circuit
region takes up 450 100 m. The PT MS-TFF takes up only
80 60 m. All circuit elements (e.g., transistors, resistors,
and even interconnects) are laid out symmetrically. The dc-bias
terminals are connected via MIM capacitors to ensure a stable
voltage supply.

V. SUMMARY

A 67-GHz 1/4 PT-SFD using 0.2-m self-aligned SEG SiGe
HBTs, with a 122-GHz cutoff frequency, a 163-GHz maximum
oscillation frequency, and an average ECL gate delay time of
5.65 ps, has been developed. The PT MS-TFF circuit of the di-
vider increases the maximum operating frequency to about 15%
higher than that of a conventional MS-TFF, yet the power con-
sumption of the divider is 175 mW, which is 1/5 that of com-
parable dividers, at a supply voltage of5.2 V. This excellent
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Fig. 12. Chip photomicrograph of the 1/4 PT-SFD, including an enlarged
image of the PT MS-TFF region. The PT-SFD occupies a 0.97� 1.1 mm area
and the PT MS-TFF takes up only 80� 60�m.

performance shows that Si bipolar technology, which offers high
reliability and cost effectiveness, will play a major role in future
millimeter-wave systems.
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